Class: XII Session: 2020-21

Subject: Mathematics

Sample Question Paper (Theory)

Time Allowed: 3 Hours

Maximum Marks: 80

General Instructions:

- 1. This question paper contains two **parts A and B**. Each part is compulsory. Part A carries **24** marks and Part B carries **56** marks
- 2. **Part-A** has Objective Type Questions and **Part -B** has Descriptive Type Questions
- 3. Both Part A and Part B have choices.

Part – A:

- 1. It consists of two sections- I and II.
- 2. Section I comprises of 16 very short answer type questions.
- Section II contains 2 case studies. Each case study comprises of 5 case-based MCQs. An examinee is to attempt any 4 out of 5 MCQs.

Part – B:

- 1. It consists of three sections- III, IV and V.
- 2. Section III comprises of 10 questions of 2 marks each.
- 3. Section IV comprises of 7 questions of 3 marks each.
- 4. Section V comprises of 3 questions of 5 marks each.
- Internal choice is provided in 3 questions of Section –III, 2 questions of Section-IV and 3 questions of Section-V. You have to attempt only one of the alternatives in all such questions.

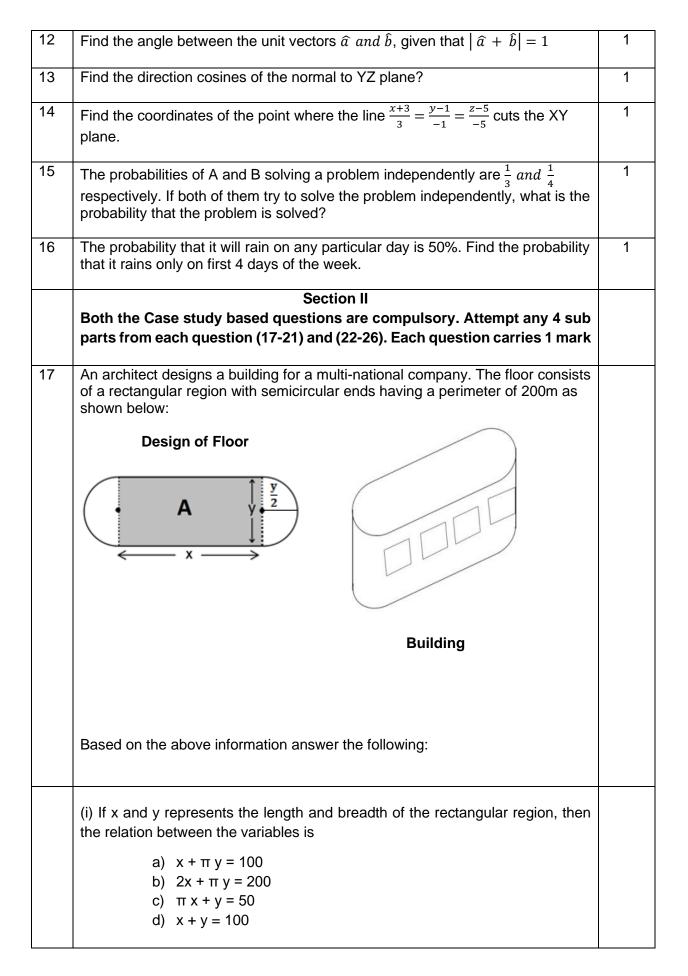
Sr.	Part – A	Mark
No.		S
	Section I	
	All questions are compulsory. In case of internal choices attempt any one.	
1	Check whether the function $f: R \to R$ defined as $f(x) = x^3$ is one-one or not.	1
	OR	

Page **1** of **10**

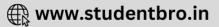
	How many reflexive relations are possible in a set A whose $n(A) = 3$.	1
2	A relation R in $S = \{1,2,3\}$ is defined as $R = \{(1,1), (1,2), (2,2), (3,3)\}$. Which element(s) of relation R be removed to make R an equivalence relation?	1
3	A relation R in the set of real numbers R defined as $R = \{(a, b): \sqrt{a} = b\}$ is a function or not. Justify	1
	OR	
	An equivalence relation R in A divides it into equivalence classes A_1, A_2, A_3 . What is the value of $A_1 \cup A_2 \cup A_3$ and $A_1 \cap A_2 \cap A_3$	1
4	If A and B are matrices of order $3 \times n$ and $m \times 5$ respectively, then find the order of matrix $5A - 3B$, given that it is defined.	1
5	Find the value of A^2 , where A is a 2×2 matrix whose elements are given by $a_{ij} = \begin{cases} 1 & if i \neq j \\ 0 & if i = j \end{cases}$	1
	OR	
	Given that A is a square matrix of order 3×3 and $ A = -4$. Find $ adj A $	1
6	Let A = $[a_{ij}]$ be a square matrix of order 3×3 and A = -7. Find the value of $a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23}$ where A_{ij} is the cofactor of element a_{ij}	1
7	Find $\int e^x (1 - \cot x + \csc^2 x) dx$	1
	OR Evaluate $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \sin x dx$	1
8	Find the area bounded by $y = x^2$, the x – axis and the lines $x = -1$ and $x = 1$.	1
9	How many arbitrary constants are there in the particular solution of the differential equation $\frac{dy}{dx} = -4xy^2$; y (0) = 1	1
	OR	
	For what value of n is the following a homogeneous differential equation: $\frac{dy}{dx} = \frac{x^3 - y^n}{x^2y + xy^2}$	1
10	Find a unit vector in the direction opposite to $-\frac{3}{4}\hat{j}$	1
11	Find the area of the triangle whose two sides are represented by the vectors $2\hat{i}$ and $-3\hat{j}$.	1

Page **2** of **10**





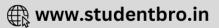
Page **3** of **10**



(ii)The area of the rectangular region A express	ed as a function of x is 1
a) $\frac{2}{\pi} (100 x - x^2)$	
b) $\frac{1}{\pi} (100 x - x^2)$	
c) $\frac{x}{\pi}(100 - x)$	
d) $\pi y^2 + \frac{2}{\pi} (100 x - x^2)$	
(iii) The maximum value of area A is	1
a) $\frac{\pi}{3200}m^2$	
b) $\frac{3200}{\pi}m^2$	
c) $\frac{5000}{\pi}m^2$	
d) $\frac{1000}{\pi}m^2$	
(iv) The CEO of the multi-national company is in of the whole floor including the semi-circular end of x should be	-
a) 0 m	
b) 30 m	
c) 50 m d) 80 m	
(v) The extra area generated if the area of the w	hole floor is maximized is : 1
a) $\frac{3000}{\pi}m^2$	
b) $\frac{5000}{\pi}m^2$	
c) $\frac{7000}{\pi}m^2$	
d) No change Both areas are equal	

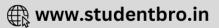
Page **4** of **10**

Get More Learning Materials Here :



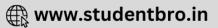
18	In an office three employees Vinay, Sonia and Iqbal process incoming copies of a certain form. Vinay process 50% of the forms. Sonia processes 20% and Iqbal the remaining 30% of the forms. Vinay has an error rate of 0.06, Sonia has an error rate of 0.04 and Iqbal has an error rate of 0.03	
	Based on the above information answer the following:	
	(i) The conditional probability that an error is committed in processing given that Sonia processed the form is :	1
	a) 0.0210	
	b) 0.04	
	c) 0.47	
	d) 0.06	
	(ii)The probability that Sonia processed the form and committed an error is :	1
	a) 0.005	
	b) 0.006	
	c) 0.008	
	d) 0.68	
	(iii)The total probability of committing an error in processing the form is	1
	a) 0	
	b) 0.047	
	c) 0.234	

Page **5** of **10**



	T	
	d) 1	
	 (iv)The manager of the company wants to do a quality check. During inspection he selects a form at random from the days output of processed forms. If the form selected at random has an error, the probability that the form is NOT processed by Vinay is : a) 1 b) 30/47 c) 20/47 	1
	d) 17/47	
	(v)Let A be the event of committing an error in processing the form and let E_1 , E_2 and E_3 be the events that Vinay, Sonia and Iqbal processed the form. The value of $\sum_{i=1}^{3} P(E_i A)$ is	1
	a) 0 b) 0.03	
	c) 0.06 d) 1	
	Part – B	
	Section III	
19	Express $tan^{-1}(\frac{cosx}{1-sinx})$, $\frac{-3\pi}{2} < x < \frac{\pi}{2}$ in the simplest form.	2
20	If A is a square matrix of order 3 such that $A^2 = 2A$, then find the value of $ A $.	2
	OR	
	If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, show that $A^2 - 5A + 7I = 0$. Hence find A^{-1} .	2
1	Find the value(s) of k so that the following function is continuous at $x = 0$	2

Page **6** of **10**



	$f(x) = \begin{cases} \frac{1-\cos kx}{x\sin x} & \text{if } x \neq 0\\ \frac{1}{2} & \text{if } x = 0 \end{cases}$	
	$\left(\frac{1}{2}\right)$ if $x = 0$	
22	Find the equation of the normal to the curve	2
	$y = x + \frac{1}{x}$, $x > 0$ perpendicular to the line $3x - 4y = 7$.	
23	Find $\int \frac{1}{\cos^2 x (1-\tan x)^2} dx$	2
	OR	
	Evaluate $\int_0^1 x(1-x)^n dx$	2
24	Find the area of the region bounded by the parabola $y^2 = 8x$ and the line $x = 2$.	2
25	Solve the following differential equation:	2
	$\frac{dy}{dx} = x^3 \operatorname{cosec} y, \operatorname{given} \operatorname{that} y(0) = 0.$	
26	Find the area of the parallelogram whose one side and a diagonal are represented by coinitial vectors $\hat{i} - \hat{j} + \hat{k}$ and $4\hat{i} + 5\hat{k}$ respectively	2
27	Find the vector equation of the plane that passes through the point (1,0,0) and contains the line $\vec{r} = \lambda \hat{j}$.	2
28	A refrigerator box contains 2 milk chocolates and 4 dark chocolates. Two chocolates are drawn at random. Find the probability distribution of the number of milk chocolates. What is the most likely outcome?	2
	OR	
	Given that E and F are events such that P(E) = 0.8, P(F) = 0.7, P (E \cap F) = 0.6. Find P ($\overline{E} \mid \overline{F}$)	2
	Section IV	
	All questions are compulsory. In case of internal choices attempt any one.	
29	Check whether the relation R in the set Z of integers defined as $R = \{(a, b) : a + b \text{ is "divisible by 2"}\}$ is reflexive, symmetric or transitive. Write the equivalence class containing 0 i.e. [0].	3
30	If $y = e^{x \sin^2 x} + (\sin x)^x$, find $\frac{dy}{dx}$.	3
31	Prove that the greatest integer function defined by $f(x) = [x], 0 < x < 2$ is not differentiable at $x = 1$	3

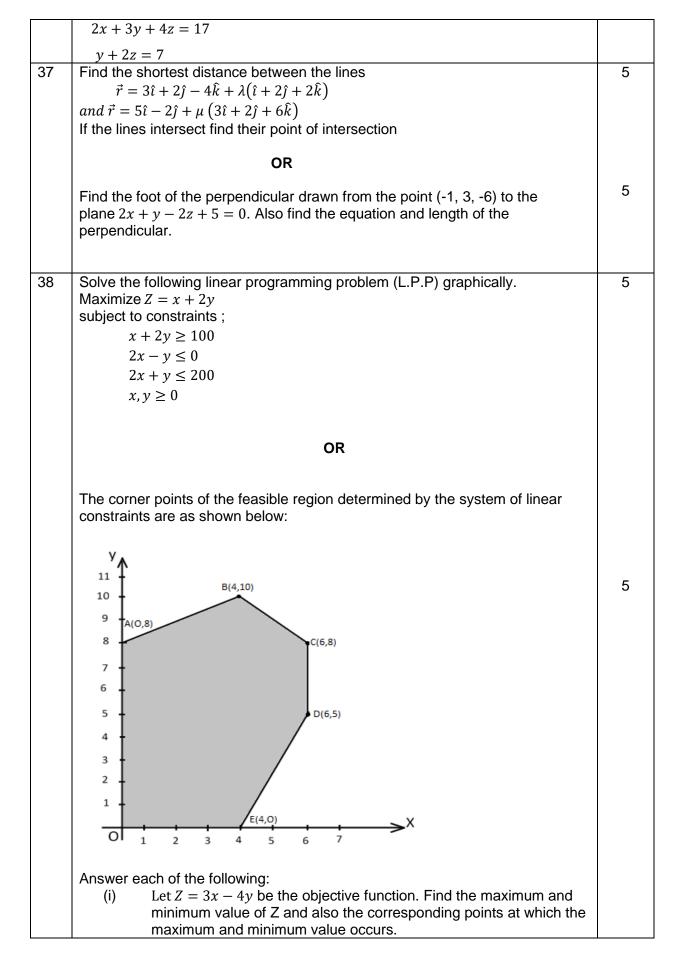
Page **7** of **10**



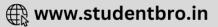
	OR	
	If $x = a \sec \theta$, $y = b \tan \theta$ find $\frac{d^2 y}{dx^2}$ at $x = \frac{\pi}{6}$	3
32	Find the intervals in which the function f given by	3
	$f(x) = \tan x - 4x, x \in \left(0, \frac{\pi}{2}\right)$ is	
	a) strictly increasing b) strictly decreasing	
33	Find $\int \frac{x^2 + 1}{(x^2 + 2)(x^2 + 3)} dx.$	3
34	Find the area of the region bounded by the curves	3
	$x^2 + y^2 = 4$, $y = \sqrt{3}x$ and $x - axis$ in the first quadrant	
	OR	
	Find the area of the ellipse $x^2 + 9y^2 = 36$ using integration	3
35	Find the general solution of the following differential equation: $x dy - (y + 2x^2)dx = 0$	3
	Section V	
	All questions are compulsory. In case of internal choices attempt any	
	one.	
36	If $A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix}$, find A^{-1} . Hence	5
	Solve the system of equations;	
	x - 2y = 10	
	2x - y - z = 8 $-2y + z = 7$	
	OR	
	Evaluate the product AB, where	5
	$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} and B = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$	
	Hence solve the system of linear equations	
	x - y = 3	

Page **8** of **10**

Get More Learning Materials Here : 📕



Page **9** of **10**



(ii) Let $Z = px + qy$, where $p, q > o$ be the objective function. Fin condition on p and q so that the maximum value of Z occurs B(4,10) <i>and</i> C(6,8). Also mention the number of optimal solution this case.	at	
--	----	--

Page **10** of **10**



Class: XII Session: 2020-21

Subject: Mathematics

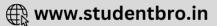
Marking Scheme (Theory)

Objective type Question Section I	Marks
Let $f(x_1) = f(x_2)$ for some $x_1, x_2 \in R$	1
$\Rightarrow x_1 = x_2, \text{Hence } f(x) \text{ is one - one}$	
OR	
2 ⁶ reflexive relations	1
(1,2)	1
Since \sqrt{a} is not defined for $a \in (-\infty, 0)$ $\therefore \sqrt{a} = b$ is not a function.	1
OR	
$A_1 \cup A_2 \cup A_3 = A \text{ and } A_1 \cap A_2 \cap A_3 = \phi$	1
3x5	1
$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	1
OR	
adj A =(-4)³-1=16	
0	1
$e^x(1-\cot x) + C$	1
OR	
f(x) is an odd function	
$\frac{\pi}{2}$	
$\therefore \int_{\frac{-\pi}{2}} x^2 \sin x dx = 0$	1
Z	
$\frac{1}{c}$ 2	1
$A = 2 \int_{0}^{1} x^{2} dx = \frac{2}{3} [x^{3}]_{0}^{1}$	
$=\frac{2}{3}sq$ unit	
	Section I Let $f(x_1) = f(x_2)$ for some $x_1, x_2 \in R$ $\Rightarrow (x_1)^3 = (x_2)^3$ $\Rightarrow x_1 = x_2$, Hence $f(x)$ is one – one OR 2 ⁶ reflexive relations (1,2) Since \sqrt{a} is not defined for $a \in (-\infty, 0)$ $\therefore \sqrt{a} = b$ is not a function. OR $A_1 \cup A_2 \cup A_3 = A$ and $A_1 \cap A_2 \cap A_3 = \phi$ 3x5 $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \Rightarrow A^2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ OR $ adj A =(-4)^{3-1}=16$ O $e^x(1 - \cot x) + C$ OR $\because f(x)$ is an odd function

Page **1** of **14**

Get More Learning Materials Here : 📕

`



9	0	1
	OR	
	OR .	
	3	1
10		1
	Ĵ	
11	$\frac{1}{2} 2\hat{\imath} \times (-3\hat{\jmath}) = \frac{1}{2} -6\hat{k} = 3 \ sq \ units$	1
12	$\left \hat{a} + \hat{b}\right ^2 = 1$	1
	$\Rightarrow \hat{a}^2 + \hat{b}^2 + 2 \hat{a} \cdot \hat{b} = 1$	
	$\Rightarrow 2 \hat{a} \cdot \hat{b} = 1 - 1 - 1$	
	$\Rightarrow \hat{a}.\hat{b} = \frac{-1}{2} \Rightarrow \hat{a} \hat{b} \cos \theta = \frac{-1}{2} \Rightarrow \theta = \pi - \frac{\pi}{3}$ $\Rightarrow \theta = \frac{2\pi}{2}$	
	$\rightarrow 0$ $-\frac{1}{3}$	
13	1,0,0	1
14	(0,0,0)	1
15	$1 - \frac{2}{3} \times \frac{3}{4} = \frac{1}{2}$	1
	$1 3^{4} 2$	
16	$\left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^7$	1
	Section II	
17(i)	(b)	1
17(ii)	(a)	1
17(iii)	(c)	1
17(iv)	(a)	1
17(v)	(d)	1
18(i)	(b)	1
18(ii)	(c)	1
18(iii)	(b)	1
18(iv)	(d)	1
18(v)	(d)	1
	Section III	4
19	$\tan^{-1}\left(\frac{\cos x}{1-\sin x}\right) = \tan^{-1}\left[\frac{\sin\left(\frac{\pi}{2}-x\right)}{1-\cos\left(\frac{\pi}{2}-x\right)}\right]$	$\frac{1}{2}$
	$tan^{-1}\left[\frac{2\sin(\frac{\pi}{4}-\frac{x}{2})\cos(\frac{\pi}{4}-\frac{x}{2})}{2\sin^2(\frac{\pi}{4}-\frac{x}{2})}\right]$	
L	1	1

Page **2** of **14**

Get More Learning Materials Here : 📕

•

	$\tan^{-1}\left[\cot\left(\frac{\pi}{4}-\frac{x}{2}\right)\right] = \tan^{-1}\left[\tan\frac{\pi}{2}-\left(\frac{\pi}{4}-\frac{x}{2}\right)\right]$	1
	$\tan^{-1}\left[\tan\left(\frac{\pi}{4}+\frac{x}{2}\right)\right] = \frac{\pi}{4}+\frac{x}{2}$	$\frac{1}{2}$
20	$A^{2} = 2A$ $\Rightarrow AA = 2A $ $\Rightarrow A A = 8 A (\because AB = A B and 2A = 2^{3} A)$ $\Rightarrow A (A - 8) = 0$ $\Rightarrow A = 0 \text{ or } 8$	$\begin{array}{c c} 1\\ \hline 2\\ 1\\ 1\\ \hline 2\\ \hline 2\\ \end{array}$
	OR	
	$A^{2} = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$	
	$5A = \begin{bmatrix} 15 & 5\\ -5 & 10 \end{bmatrix}, 7I = \begin{bmatrix} 7 & 0\\ 0 & 7 \end{bmatrix}$	
	$\Rightarrow A^2 - 5A + 7I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$	1
	$\Rightarrow A^{-1}(A^2 - 5A + 7I) = A^{-1}0$	
	$\Rightarrow A - 5I + 7A^{-1} = 0$	
	$\Rightarrow 7A^{-1} = 5I - A$	
	$\Rightarrow A^{-1} = \frac{1}{7} \left(\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix} \right)$	1
	$\Rightarrow A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$	
21	$Lt x \to 0 \frac{1 - \cos k x}{x \sin x} = Lt \frac{2 \sin^2 \left(\frac{kx}{2}\right)}{x \sin x}$	
	$= \frac{Lt}{x \to 0} \frac{\frac{2 \sin^2\left(\frac{kx}{2}\right)}{\frac{x^2}{\frac{x \sin x}{x^2}}}$	
	$=\frac{\underset{x \to 0}{\overset{Lt}{\frac{2\sin^2\left(\frac{kx}{2}\right)}{\left(\frac{kx}{2}\right)^2} \times \left(\frac{k}{2}\right)^2}}{\underset{x \to 0}{\overset{Lt}{\frac{\sin x}{x}}}} =\frac{2\times 1\times \frac{k^2}{4}}{1}$	$1\frac{1}{2}$

Page **3** of **14**

Get More Learning Materials Here : 📕

•

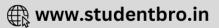
	:: f(x) is continuous at $x = 0$	
	$\therefore \frac{Lt}{x \to 0} f(x) = f(0)$	
	$\Rightarrow \frac{k^2}{2} = \frac{1}{2} \Rightarrow k^2 = 1 \Rightarrow k = \pm 1$	
		$\frac{1}{2}$
22	$y = x + \frac{1}{x} \Rightarrow \frac{dy}{dx} = 1 - \frac{1}{x^2}$	Z
	::normal is perpendicular to $3x - 4y = 7$, :: tangent is parallel to it	1
	$1 - \frac{1}{x^2} = \frac{3}{4} \Rightarrow x^2 = 4 \qquad \Rightarrow x = 2 (\because x > 0)$	I
	when $x = 2$, $y = 2 + \frac{1}{2} = \frac{5}{2}$	
	: Equation of Normal : $y - \frac{5}{2} = -\frac{4}{3}(x-2) \Rightarrow \qquad 8x + 6y = 31$	1
23	$I = \int \frac{1}{\cos^2 x \left(1 - \tan x\right)^2} dx$	
	Put, $1 - \tan x = y$	
	So that, $-\sec^2 x dx = dy$	1
	$= \int \frac{-1 dy}{y^2} = - \int y^{-2} dy$	
	$= + \frac{1}{y} + c = \frac{1}{1 - \tan x} + c$	1
	OR	
	$I = \int_0^1 x (1-x)^n dx$	1
	$I = \int_0^1 (1-x) [1-(1-x)]^n dx$	$\frac{1}{2}$
	$I = \int_0^1 (1-x) x^n dx = \int_0^1 (x^n - x^{n+1}) dx$	
	$I = \left[\frac{x^{n+1}}{n+1} - \frac{x^{n+2}}{n+2}\right]_{0}^{1}$	1
	$r = \lfloor n+1 n+2 \rfloor_0$	$\frac{1}{2}$
	$I = \left[\left(\frac{1}{n+1} - \frac{1}{n+2} \right) - 0 \right] = \frac{1}{(n+1)(n+2)}$	2
24	$Area = 2 \int_{-\infty}^{2} \sqrt{8x} dx$	1
	0	
	$= 2 \times 2\sqrt{2} \int_{-\infty}^{2} x^{\frac{1}{2}} dx$	
	Ő	

Page **4** of **14**

Get More Learning Materials Here : 📕

•

CLICK HERE



	$= 4\sqrt{2} \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{0}^{2}$ $= \frac{8}{3}\sqrt{2} \left[2^{\frac{3}{2}} - 0\right] = \frac{8\sqrt{2}}{3} \times 2\sqrt{2}$ $= \frac{32}{3} sq units$	$\frac{1}{2}$ $\frac{1}{2}$
25	$\frac{dy}{dx} = x^3 cosec \ y ; y(0) = 0$	
	$\frac{dx}{dx} = x \ cosec \ y \ , \ y(0) = 0$ $\int \frac{dy}{cosec \ y} = \int x^3 dx$ $\int \sin y \ dy = \int x^3 dx$	$\frac{1}{2}$
	$-\cos y = \frac{x^4}{4} + c$	1
	$-1 = c (\because y = 0, when x = 0)$ $\cos y = 1 - \frac{x^4}{4}$	$\frac{1}{2}$
26	Let $\vec{a} = \hat{i} - \hat{j} + \hat{k}$	
	$\overrightarrow{d} = 4 \ \hat{\iota} + 5 \hat{k}$	
	$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{d} \div \overrightarrow{b} = \overrightarrow{d} - \overrightarrow{a} = 3\hat{\imath} + \hat{\jmath} + 4\hat{k}$	$\frac{1}{2}$
	$\overrightarrow{a} \times \overrightarrow{b} = \begin{vmatrix} \hat{i} - \hat{j} + \hat{k} \\ 1 - 1 & 1 \\ 3 & 1 & 4 \end{vmatrix} = -5\hat{i} - 1\hat{j} + 4\hat{k}$	1
	Area of parallelogram = $ \vec{a} \times \vec{b} = \sqrt{25 + 1 + 16} = \sqrt{42}$ sq units	$\frac{1}{2}$
27	Let the normal vector to the plane be \vec{n} Equation of the plane passing through (1,0,0), i.e., \hat{i} is $(\vec{r} - \hat{i}) \cdot \vec{n} = 0$ (1)	1
	\therefore plane (1) contains the line $\vec{r} = \vec{o} + \lambda \hat{j}$	
	$\therefore \hat{\imath} \cdot \overrightarrow{n} = 0 \text{ and } \hat{\jmath} \cdot \overrightarrow{n} = 0 \qquad \Rightarrow \overrightarrow{n} = \hat{k}$	
	Hence equation of the plane is $(\vec{r} - \hat{\imath}) \cdot \hat{k} = 0$ i.e., $\vec{r} \cdot \hat{k} = 0$	1
28	Let x denote the number of milk chocolates drawn	
	X P(x)	

Page **5** of **14**

Get More Learning Materials Here : 📕

•

	$\begin{array}{c c} 0 & \frac{4}{6} \times \frac{3}{5} = \frac{12}{30} \end{array}$	
	$1 \qquad \left(\frac{2}{6} \times \frac{4}{5}\right) \times 2 = \frac{16}{30}$	
	$2 \qquad \frac{2}{6} \times \frac{1}{5} = \frac{2}{30}$	$1\frac{1}{2}$
	Most likely outcome is getting one chocolate of each type	$\frac{1}{2}$
	OR	
	$P(\bar{E} \mid \bar{F}) = P\frac{(\bar{E} \cap \bar{F})}{P(\bar{F})} = \frac{(\overline{E \cup F})}{P(\bar{F})} = \frac{1 - P(E \cup F)}{1 - P(F)} - \dots - (1)$	1
	Now $P(E \cup F) = P(E) + P(F) - P(E \cap F)$	
	= 0.8+0.7-0.6=0.9	$\frac{1}{2}$
	Substituting value of $P(E \cup F)$ in (1)	2
	P $(\bar{E} \bar{F}) = \frac{1-0.9}{1-0.7} = \frac{0.1}{0.3} = \frac{1}{3}$	$\frac{1}{2}$
	Section IV	
29	 (i) Reflexive : Since, a+a=2a which is even ∴ (a,a) ∈ R ∀a ∈ Z Hence R is reflexive 	$\frac{1}{2}$
	(ii) Symmetric: If (a,b) \in R, then a+b = 2 $\lambda \Rightarrow$ b+a = 2 λ \Rightarrow (b,a) \in R, Hence R is symmetric	1
		•
	(iii) Transitive:	
	If $(a,b) \in \mathbb{R}$ and $(b,c,) \in \mathbb{R}$	
	then $a+b = 2 \lambda(1)$ and $b+c = 2 \mu$ (2)	
	Adding (1) and (2) we get	
	$a+2b+c=2(\lambda + \mu)$	
	$\Rightarrow a+c=2 (\lambda + \mu - b)$	
	$\Rightarrow a+c=2k \text{, where } \lambda + \mu - b = k \qquad \Rightarrow (a,c) \in \mathbb{R}$	
	Hence R is transitive $[0] = (-4, -2, 0, -2, 4, -)$	1
	$[0] = \{\dots -4, -2, 0, 2, 4\dots\}$	$\frac{1}{2}$
30	Let $u = e^{x \sin^2 x}$ and $v = (\sin x)^x$	1
		$\frac{1}{2}$

Page **6** of **14**

Get More Learning Materials Here : 📕

•

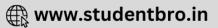
so that
$$y = u + v \Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} \dots (1)$$

Now, $u = e^{x \sin^2 x}$, Differentiating both sides w.r.t. x, we get
 $\Rightarrow \frac{du}{dx} = e^{x \sin^2 x} [x(\sin 2x) + \sin^2 x] \dots (2)$
Also, $v = (\sin x)^x$
 $\Rightarrow \log v = x \log (\sin x)$
Differentiating both sides w.r.t. x, we get
 $\frac{1}{w} \frac{dv}{v dx} = x \cot x + \log (\sin x)$
 $\frac{dv}{v dx} = (\sin x)^x [x \cot x + \log(\sin x)] \dots (3)$
Substituting from $-(2), -(3)$ in $-(1)$ we get
 $\frac{dy}{dx} = e^{x \sin^2 x} [x\sin 2x + \sin^2 x] + (\sin x)^x [x \cot x + \log(\sin x)]$
31
RHD = $\frac{tt}{h \to 0} \frac{t(1+h) - f(1)}{h} = \frac{tt}{h \to 0} \frac{1+h[-11]}{h}$
 $= \frac{tt}{h \to 0} \frac{t(1-h) - f(1)}{-h} = \frac{tt}{h \to 0} \frac{1-h[-11]}{-h}$
 $= \frac{tt}{h \to 0} \frac{f(1-h) - f(1)}{-h} = \frac{tt}{h \to 0} \frac{1-h[-11]}{-h}$
 $= \frac{tt}{h \to 0} \frac{f(1-h) - f(1)}{-h} = \frac{tt}{h \to 0} \frac{1-h[-11]}{-h}$
 $= \frac{tt}{h \to 0} \frac{f(1-h) - f(1)}{-h} = \frac{tt}{h \to 0} \frac{1-h[-11]}{-h}$
 $= \frac{tt}{h \to 0} \frac{f(1-h) - f(1)}{-h} = \frac{tt}{h \to 0} \frac{1-h}{-h}$
 $= \frac{tt}{h \to 0} \frac{1-h}{-h} = 0$
1
Since, RHD \neq LHD
Therefore $f(x)$ is not differentiable at $x = 1$
N
 $x = a \sec \theta \Rightarrow \frac{dx}{d\theta} = a \sec \theta \tan \theta \dots (2)$

Page **7** of **14**

Get More Learning Materials Here : 📕

•



dy i 20 i	
$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} = \frac{b}{a} \csc \theta$	$1\frac{1}{2}$
Differentiating both sides w.r.t.x, we get	
$\frac{d^2y}{dx^2} = \frac{-b}{a} cosec \ \theta \cot \theta \times \frac{d\theta}{dx}$	
$= \frac{-b}{a} \csc \theta \cot \theta \times \frac{1}{a \sec \theta \tan \theta} [using (2)]$	
$=rac{-b}{a.a}cot^3 heta$	1
$\frac{d^2 y}{dx^2}\Big _{\theta = \frac{\pi}{6}} = \frac{-b}{a} \left[\cot\frac{\pi}{6}\right]^3 = \frac{-b}{a} \left(\sqrt{3}\right)^3 = -\frac{3\sqrt{3}b}{a.a}$	$\frac{1}{2}$
$32 f(x) = \tan x - 4x$	1
$f'(x) = \sec^2 x - 4$	$\frac{1}{2}$
a) For $f(x)$ to be strictly increasing	
f'(x) > 0	
$\Rightarrow \qquad sec^2 x - 4 > 0$	
$\Rightarrow \qquad sec^2 x > 4$	
$\Rightarrow \qquad \cos^2 x < \frac{1}{4} \Rightarrow \cos^2 x < \left(\frac{1}{2}\right)^2$	
$\Rightarrow \qquad -\frac{1}{2} < \cos x < \frac{1}{2} \Rightarrow \frac{\pi}{3} < x < \frac{\pi}{2}$	$1\frac{1}{2}$
b) For $f(x)$ to be strictly decreasing	
f'(x) < 0	
$\Rightarrow \qquad sec^2 x - 4 < 0$	
$\Rightarrow \qquad sec^2 x < 4$	
$\Rightarrow \cos^2 x > \frac{1}{4}$	
$\Rightarrow \cos^2 x > \left(\frac{1}{2}\right)^2$	
$\Rightarrow \cos x > \frac{1}{2} \left[\because x \in \left(0, \frac{\pi}{2}\right) \right]$	
$\Rightarrow \qquad 0 < x < \frac{\pi}{3}$	
	1

Page **8** of **14**

Get More Learning Materials Here : 📕

•

33	Put $x^2 = y$ to make partial fractions	$\frac{1}{2}$			
	$\frac{x^2+1}{(x^2+2)(x^2+3)} = \frac{y+1}{(y+2)(y+3)} = \frac{A}{y+2} + \frac{B}{y+3}$	2			
		$\frac{1}{2}$			
	$\Rightarrow y + 1 = A(y + 3) + B(y + 2)(1)$				
	Comparing coefficients of y and constant terms on both sides of (1) we get				
	A+B = 1 and $3A + 2B = 1$				
	Solving, we get $A = -1$, $B = 2$	1			
	$\int \frac{x^2 + 1}{(x^2 + 2)(x^2 + 3)} dx = \int \frac{-1}{x^2 + 2} dx + 2 \int \frac{1}{x^2 + 3} dx$	1			
	$= -\frac{1}{\sqrt{2}} tan^{-1} \left(\frac{x}{\sqrt{2}}\right) + \frac{2}{\sqrt{3}} tan^{-1} \left(\frac{x}{\sqrt{3}}\right) + C$	·			
34	Solving $y = \sqrt{3}x \ and x^2 + y^2 = 4$				
	We get $x^2 + 3x^2 = 4$	1			
	$\Rightarrow x^2 = 1 \Rightarrow x = 1$	$\frac{1}{2}$			
		$\frac{1}{2}$			
	Required Area				
	$= \sqrt{3} \int_{0}^{1} x dx + \int_{1}^{2} \sqrt{2^2 - x^2} dx$	$\frac{1}{2}$			
	$=\frac{\sqrt{3}}{2}[x^2]_0^1 + \left[\frac{x}{2}\sqrt{2^2 - x^2} + 2\sin^{-1}\left(\frac{x}{2}\right)\right]_1^2$	1			
	$= \frac{\sqrt{3}}{2} + \left[2 \times \frac{\pi}{2} - \frac{\sqrt{3}}{2} - 2 \times \frac{\pi}{6}\right]$				
	$\frac{2\pi}{3}$ sq units	$\frac{1}{2}$			
	OR	2			

Page **9** of **14**

Get More Learning Materials Here : 📕

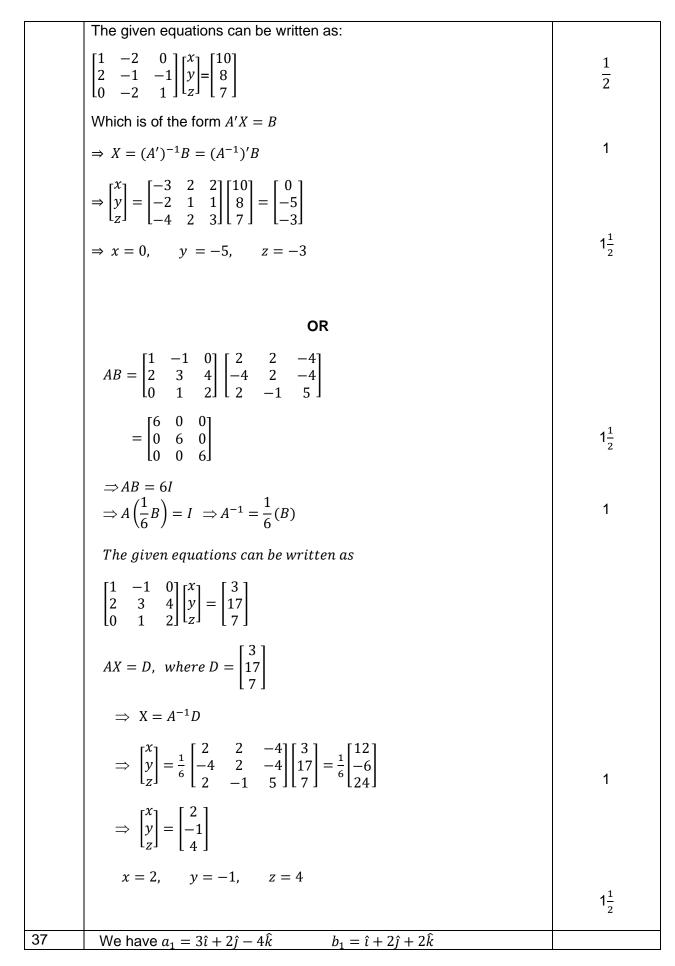
•

		1
	Required Area = $\frac{4}{3} \int_0^6 \sqrt{6^2 - x^2} dx$	$\frac{1}{2}$
	\circ	$\frac{1}{2}$
	$= \frac{4}{3} \left[\frac{x}{2} \sqrt{6^2 - x^2} + 18 \sin^{-1} \left(\frac{x}{6} \right) \right]_0^6$	1
	$=\frac{4}{3}\left[18\times\frac{\pi}{2}-0\right]=12\pi \ sq \ units$	1
35	The given differential equation can be written as	
	$\frac{dy}{dx} = \frac{y + 2x^2}{x} \Rightarrow \frac{dy}{dx} - \frac{1}{x}y = 2x$	
	Here $P = -\frac{1}{x}$, $Q = 2x$	$\frac{1}{2}$
	$IF = e^{\int P dx} = e^{-\int \frac{1}{x} dx} = e^{-\log x} = \frac{1}{x}$	1
	The solutions is :	
	$y \times \frac{1}{x} = \int \left(2x \times \frac{1}{x}\right) dx$	1
	$\Rightarrow \frac{y}{x} = 2x + c$	1
	$\Rightarrow y = 2x^2 + cx$	$\frac{1}{2}$
20		1
36	A = 1(-1-2) - 2(-2-0) = -3 + 4 = 1 A is nonsingular, therefore A^{-1} exists	$\frac{1}{2}$
	$A \text{ is nonsingular, therefore } A \text{ exists}$ $A dj A = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$	
	$\Rightarrow A^{-1} = \frac{1}{ A } (Adj A) = \begin{bmatrix} -3 & -2 & -4 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$	$1\frac{1}{2}$

Page **10** of **14**

Get More Learning Materials Here : 📕

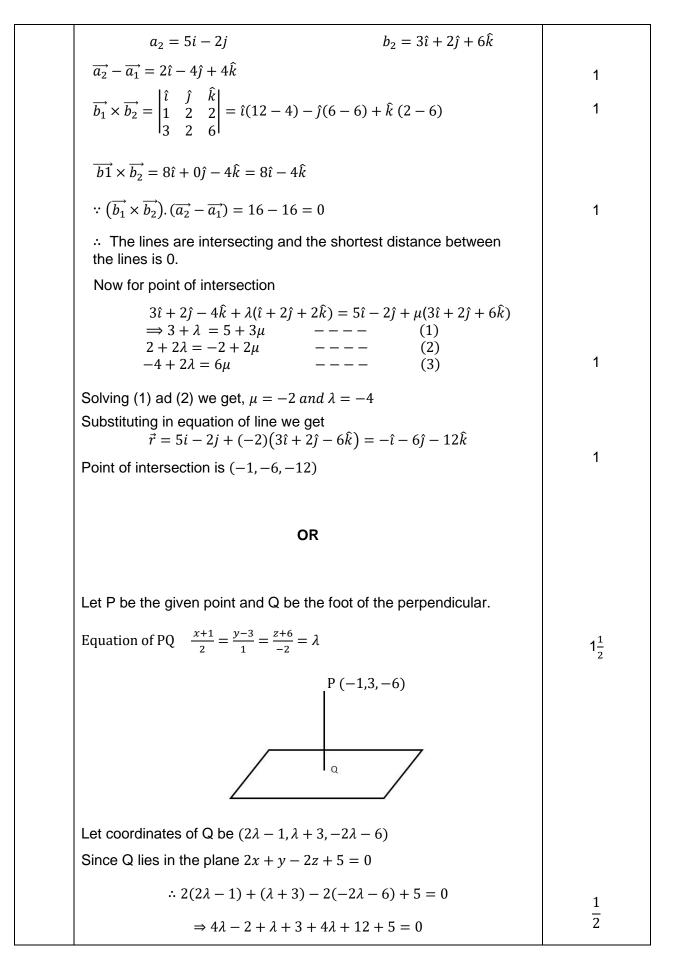
•



Page **11** of **14**

Get More Learning Materials Here :

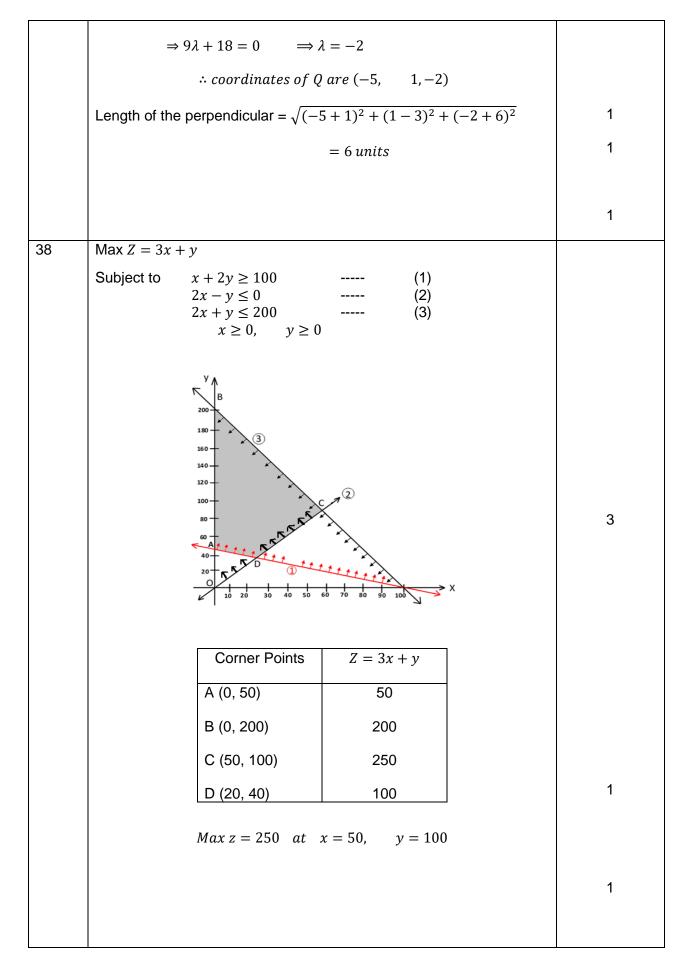
🕀 www.studentbro.in



CLICK HERE

(>>

Page **12** of **14**



Page **13** of **14**

Get More Learning Materials Here : 📕

	0	R		
(i)				
	Corner points	Z = 3x - 4y		
	O(0,0)	0		
	A(0,8)	-32		
	B(4,10)	-28		
	C(6,8)	-14		$1\frac{1}{2}$
	D(6,5)	-2		2
	E(4,0)	12		
		$Iax \ Z = 12 \ at \ E(4, -1)$.0)	
	Min $Z = -$	-32 at A(0,8)		
				1
	e maximum value of Z	occurs at B(4,10) a	nd C(6, 8)	
-	+10q = 6p + 8q			0
$\Rightarrow 2q$	-			2
⇒p =		in finite		$\frac{2}{1}$
Numb	per of optimal solution a	are infinite		2

Page **14** of **14**

Get More Learning Materials Here : 📕

•

